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Abstract 

Frailty is a common syndrome in older adults, marked 

by low physiological reserve, which can lead to an 

increased vulnerability to stressors. We utilized a 

validated upper-extremity function (UEF) test that 

involves 20-second rapid arm flexion to assess motor and 

cardiac performance. One hundred and seventy two older 

adults (≥65 years) were recruited and classified as non-

frail, pre-frail, and frail using the Fried phenotype. For 

UEF, wearable motion sensors captured elbow angular 

velocity, and heart rate (HR) was continuously recorded 

using an ECG wearable recording system. The dynamic 

interconnection between angular displacement and HR 

was assessed using convergent cross-mapping (CCM). 

ANCOVA (adjusted for age, sex, and BMI) tested 

differences between the three frailty groups; effect sizes 

were reported. Across groups, HR increase differed 

significantly with smaller changes with frailty (p < 0.01; 

effect size = 0.15), HR recovery showed a trend toward 

group differences with smaller recoveries for frail 

individuals (p = 0.06; effect size = 0.19), and the HR–

motor correlation decreased with frailty (p < 0.01; effect 

size = 0.33). This approach captures both cardiac and 

motor function within less than two minutes of a physical 

task while seated, to provide a unique tool for quick and 

objective assessment of frailty in a clinical setting. 

 

 

1. Introduction 

Frailty reflects diminished reserve across systems and 

includes autonomic dysregulation, seen as reduced heart 

rate variability (HRV) and complexity and blunted cardiac 

response to stressors [1]. Therefore, not only resting heart 

rate (HR) measures but also HR dynamics during and after 

physical activity may serve as potential markers of 

autonomic–cardiac resilience and frailty. 

Conventional frailty tools, such as the Fried’s 

phenotype and the Rockwood Frailty Index are useful but 

labor-intensive, partly subjective, and often impractical for 

patients with mobility limitations when gait testing is 

required [2]. A further gap is that existing tools rarely 

target cardiac function as a biomarker of frailty. To address 

these gaps and capture both motor and cardiac aspects, we 

use a previously validated 20-s seated upper-extremity 

function (UEF) test while recording motion and HR signals 

[3]. 

Frailty likely arises from dysregulation between 

systems rather than within a single system [2]. Building on 

the UEF platform, we assess motor–cardiac dynamic 

interaction using the convergent cross-mapping (CCM) 

approach; prior pilot data showed weaker interaction in 

pre-frail/frail adults compared to non-frails and suggested 

that CCM features improve discrimination beyond HR 

dynamics and motor metrics [2]. 

Within a larger sample incorporating distinct pre-frail 

(intermediate stage of frailty) and frail older adults, in the 

current work, we evaluated four metrics, HR increase 

during UEF, HR decrease during recovery, CCM 

correlation, and MSE (the mean-squared prediction error 

from CCM), to determine their association with frailty 

stages. We hypothesized a graded pattern across non-frail, 

pre-frail, and frail, with particular focus on distinguishing 

pre-frail from frail and pre-frail from non-frail older adults. 

 

2. Materials and Methods 
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2.1. Participants  

We enrolled community-dwelling and clinic-referred 

adults ≥65 years, with or without advanced heart disease, 

from primary/community sources and from cardiac 

surgery clinics at Robert Wood Johnson (NJ) and Banner 

(AZ). Inclusion criteria were the ability to walk 15 ft for 

frailty assessment and the capacity to understand and sign 

informed consent. Exclusions were major 

motor/neurological disorders (e.g., Parkinson’s disease, 

multiple sclerosis, and recent stroke); severe upper-

extremity conditions precluding the UEF task (e.g., 

bilateral elbow fractures and rheumatoid arthritis); severe 

cognitive impairment; and terminal illness. To avoid 

biased HR measurements, we also excluded subjects with 

arrhythmias, implanted pacemakers, and those currently 

using β-blockers or similar agents [4]. All participants 

provided written informed consent; the study was 

approved by Rutgers University and University of Arizona 

IRBs and conducted in accordance with the Declaration of 

Helsinki. 

 

2.2. Frailty Assessments and Clinical 

Measures 

    Frailty was classified using the five-component Fried 

phenotype, including: (1) unintentional weight loss ≥4.5 kg 

in the past year; (2) weak grip strength (sex/BMI-

adjusted); (3) slow 15-ft gait speed (height/sex-adjusted); 

(4) self-reported exhaustion (2-item CES-D); and (5) low 

physical activity (short Minnesota Leisure-Time Activity 

Questionnaire) [5]. Participants were labelled non-frail (0 

criteria), pre-frail (1–2 criteria), or frail (≥3 criteria). 

Clinical covariates included cognition (MoCA), 

comorbidities (Charlson Comorbidity Index), and 

depressive symptoms (PHQ-9). 

 

2.3. UEF Test and HR Assessment 

Participants rested in a seated position for 2 minutes, 

performed a 20-second right-arm UEF (rapid arm flexion–

extension), then rested another 2 minutes. Prior work 

showed comparable UEF outcomes for the left/right arms. 

A brief left-arm practice standardized instruction [6]. 

Upper-limb kinematics were recorded with two triaxial 

inertial sensors (LEGSys, BioSensics; 100 Hz) on the right 

forearm and upper arm; angular velocity was high-pass 

filtered at 2.5 Hz, flexion cycles were detected, and the 

continuous kinematic series (motor data) was retained for 

CCM analysis. Cardiac activity was acquired using a 

wearable ECG (360° eMotion Faros, Mega Electronics; 

ECG 1000 Hz; accelerometer 100 Hz) with two left-chest 

electrodes (upper mid-thorax and inferior to the left rib 

cage) to obtain an ECG signal with synchronized 

accelerometry for precise identification of task start/stop. 

R-peaks were detected via a Pan–Tompkins algorithm with 

visual verification to generate beat-to-beat HR [7]. Primary 

cardiac outcomes were HR dynamics, including HR 

increase during UEF and HR decrease during recovery. HR 

and motor time series were time-aligned, and their 

interconnection was quantified using CCM.  

 

2.4. CCM Analysis  

    We quantified directional nonlinear coupling between 

HR and motor kinematics using CCM, which tests whether 

past values of one signal can predict the other. Both series 

were resampled to 10 Hz (0.1-s intervals) via spline 

interpolation. Each HR data point represents average HR 

values over 0.1-s, and the corresponding motor samples 

were the angular displacement over each 0.1-s of UEF, 

computed by integrating the rectified elbow angular 

velocity (denoted by 𝑀𝑓, Eq. 1) 

 

𝑀𝑓𝑖
= ∫ 𝜔𝑒𝑑𝑡,

𝑡𝑖+0.1

𝑡𝑖
  (1) 

 

Here, 𝜔𝑒 denotes the rectified elbow angular velocity. 

By Takens’ embedding theorem, the state of a 

dynamical system can be reconstructed from a single 

observed series 𝑋(𝑡) using delay coordinates [2]. The 

reconstructed (shadow) manifold, 𝑴𝑋, is formed by 𝐸-

dimensional vectors built from lagged samples spaced by 

𝜏, as in Eq. (2): 

 

𝑀𝑋 = 〈𝑋(𝑡), 𝑋(𝑡 − 𝜏), 𝑋(𝑡 − 2𝜏) … 𝑋(𝑡 − (𝐸 − 1)𝜏)〉 (2) 

 

We built 𝐸-dimensional delay-embedded manifolds for 

both series and set 𝐸 =  4 from the false nearest neighbors 

criterion, with a lag (𝜏) of 1-s from delayed mutual 

information. Using a k-nearest neighbors predictor with 

𝑘 =  𝐸 +  1, we performed directional prediction by 

locating the 𝑘 nearest points of the source manifold, 

mapping their time indices to the target series, and forming 

a distance-weighted average to estimate the target value, as 

in Eq. (3); motor-to-HR and HR-to-motor were computed. 

 

  𝑌̂(𝑡) = ∑ 𝜔𝑖𝑌(𝑡𝑖)
𝐸+1
𝑖=1 ,  (3) 

 

Here, 𝑌(𝑡) is the original HR time series, and  𝑌̂(𝑡) is the 

predicted HR value at time 𝑡. The weights 𝜔𝑖 were 

computed based on the relative Euclidean distances 

between points in the source manifold and its 𝑖𝑡ℎ nearest 

neighbors. CCM strength was summarized by the Pearson 

correlation coefficient 𝑟 between the predicted and 

observed target series, and by the mean squared error 

(MSE) to capture the magnitude of prediction error. 

 

2.5. Statistics  
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    Normality was assessed with the Shapiro–Wilk W test; 

variables failing normality were rank- or log-transformed. 

Group differences in numeric demographics (age, height, 

weight, and BMI) were examined with univariate 

ANOVA, and sex distributions with chi-square. For 

outcomes, ANCOVA tested three-group differences (non-

frail/pre-frail/frail) for each dependent variable, adjusting 

for age, sex, and BMI. Effect sizes for the three-group 

ANCOVAs were quantified as Cohen’s f and computed in 

G*Power. All analyses were conducted in JMP Pro 

(version 18; SAS Institute Inc., Cary, NC, USA), with 

significance set at p < 0.05. 

 

3. Results 

We enrolled 172 older adults (40 non-frail, 104 pre-

frail, and 28 frail as defined by Fried); age and BMI 

differed across groups (p<0.04), while sex distribution was 

comparable (χ² p=0.11) (Table 1). During the UEF task, 

HR increased in all groups but less with greater frailty 

level: the frail group showed a 31.9% smaller increase than 

non-frail and 15.4% smaller than pre-frail, with a 

significant three-group effect (p<0.01; effect size=0.15). 

Post-task recovery showed the same pattern; using the 

absolute HR percent decrease, the frail group recovered 

30.8% less than non-frail and 15.8% less than pre-frail, 

with a trend for three-group differences (p=0.06; effect 

size=0.19). Motor–cardiac coupling also weakened with 

frailty; the HR–angle correlation declined across groups 

(p<0.01; effect size=0.33), 26% lower in frail vs non-frail 

and 11.4% lower vs pre-frail, while prediction error (MSE) 

increased across groups (p<0.01; effect size=0.29), 

indicating progressively weaker coupling (Figure 1). 

 

Table 1. Participant Demographics by Frailty Status 

Demographic 

Information 

Non-frail 

(n = 40) 

Pre-frail 

(n = 104) 

Frail 

(n = 28) 

Age (mean ± SD) 71.2 ± 8.4 77.4 ± 9.1 77.9 ± 8.7 

Female, n (%) 23 (58%) 58 (56%) 10 (36%) 

BMI (mean ± SD) 25.8 ± 4.8 28.2 ± 5.5 28.9 ± 6.6 

 

4. Discussion 

This study demonstrates that both HR dynamics and 

heart–motor interactions obtained during the UEF test 

were significantly different across frailty groups. Frail 

adults showed attenuated HR increase during UEF, slower 

post-task HR recovery, and weaker heart–motor coupling 

compared with pre-frail and non-frail peers. Together, 

these group differences align with autonomic 

dysregulation in frailty, which is caused by an imbalance 

between sympathetic and parasympathetic control. This 

imbalance between sympathetic/parasympathetic control 

indicates a reduced capacity to mount and recover from 

stress responses [8].  

 
Figure 1.  Group differences in HR response and heart-

motor coupling across frailty groups 

 

HR dynamics in response to UEF provide a sensitive 

marker of autonomic dysfunction in frailty. Unlike resting 

HRV, whose utility is limited by between‐subject 

variability, diurnal fluctuation, and sensitivity to breathing 

and environmental conditions, HR dynamics capture 

sympathetic activation during movement and 

parasympathetic rebound during recovery, yielding a 

dynamic index of cardiac resilience; the significant group 

differences we observed support this value [9]. In our 

cohort, baseline HRV metrics commonly used to index 

autonomic balance, SDRR (standard deviation of RR 

intervals), RMSSD (root mean square of successive RR 

differences), pNN50 (percentage of successive RR 

intervals differing >50 ms), and non-linear Poincaré 

indices SD1/SD2, showed no significant three-group 

differences in ANCOVA (non-frail/pre-frail/frail), 

adjusting for age, sex, and BMI (all p>0.2), indicating that 

resting HRV did not discriminate frailty status in this 

sample. In contrast, task-evoked HR dynamics did [10]. 

Complementing HR dynamics, CCM quantified HR–

motor dynamic interaction and showed weaker coupling in 

frail participants, indicating reduced cross-system 

integration.  

From a clinical standpoint, these findings are highly 

relevant for populations with advanced heart disease, 

where frailty is common and disease-specific tools are 

limited. The UEF-based approach is brief, requires 

minimal mobility, and can be performed at the bedside, 

making it feasible for patients unable to complete walking-
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based frailty tests. The clear group differences support 

integrating task-evoked HR dynamics and heart–motor 

coupling into a multimodal frailty risk score. Also, we have 

already validated the feasibility of smartwatch-based 

frailty assessment using built-in gyroscopes and PPG 

sensors. The future integration of these measures into 

wearable platforms could enable practical monitoring in 

both clinical and home settings [11].  

Future studies should recruit larger, balanced samples 

across frailty groups, include longitudinal follow-up, and 

test reproducibility in diverse clinical populations. 

 

5. Conclusion 

We introduced a brief, seated multimodal assay that 

combines HR dynamics with motor–cardiac coupling 

quantified by CCM during a 20s UEF task to index 

autonomic and motor resilience in older adults. Frailty was 

associated with a blunted HR increase during the task and 

an attenuated HR decrease during recovery, whereas 

resting HRV features were not discriminatory, highlighting 

the value of dynamic HR responses in frailty assessment. 

CCM captured the dynamic interaction between 

physiological systems and differed significantly among the 

three frailty groups (non-frail, pre-frail, and frail). Using 

CCM, we could assess coupling deficits between frail and 

pre-frail (the intermediate stage of frailty), demonstrating 

clear stage sensitivity. HR dynamics showed the same 

pattern of groupwise differences and stage sensitivity. 

Because UEF is short, objective, and feasible even for 

hospitalized or bed-bound patients, this approach can 

complement or substitute walking-based assessments 

when mobility is limited. This work establishes the CCM-

based integration of motor and cardiac performance as a 

candidate frailty marker in cardiac patients, which, to our 

knowledge, has not been reported. Using the current work 

as a proof of concept, future work will develop and validate 

a multimodal frailty score that includes motor performance 

and cardiac dynamics to improve the generalizability of 

our frailty assessment scoring system.  
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