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Abstract

Frailty is a common syndrome in older adults, marked
by low physiological reserve, which can lead to an
increased vulnerability to stressors. We utilized a
validated upper-extremity function (UEF) test that
involves 20-second rapid arm flexion to assess motor and
cardiac performance. One hundred and seventy two older
adults (>65 years) were recruited and classified as non-
frail, pre-frail, and frail using the Fried phenotype. For
UEF, wearable motion sensors captured elbow angular
velocity, and heart rate (HR) was continuously recorded
using an ECG wearable recording system. The dynamic
interconnection between angular displacement and HR
was assessed using convergent cross-mapping (CCM).
ANCOVA (adjusted for age, sex, and BMI) tested
differences between the three frailty groups, effect sizes
were reported. Across groups, HR increase differed
significantly with smaller changes with frailty (p < 0.01;
effect size = 0.15), HR recovery showed a trend toward
group differences with smaller recoveries for frail
individuals (p = 0.06; effect size = 0.19), and the HR—
motor correlation decreased with frailty (p < 0.01; effect
size = 0.33). This approach captures both cardiac and
motor function within less than two minutes of a physical
task while seated, to provide a unique tool for quick and
objective assessment of frailty in a clinical setting.

1. Introduction

Frailty reflects diminished reserve across systems and
includes autonomic dysregulation, seen as reduced heart
rate variability (HRV) and complexity and blunted cardiac
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response to stressors [1]. Therefore, not only resting heart
rate (HR) measures but also HR dynamics during and after
physical activity may serve as potential markers of
autonomic—cardiac resilience and frailty.

Conventional frailty tools, such as the Fried’s
phenotype and the Rockwood Frailty Index are useful but
labor-intensive, partly subjective, and often impractical for
patients with mobility limitations when gait testing is
required [2]. A further gap is that existing tools rarely
target cardiac function as a biomarker of frailty. To address
these gaps and capture both motor and cardiac aspects, we
use a previously validated 20-s seated upper-extremity
function (UEF) test while recording motion and HR signals
[3].

Frailty likely arises from dysregulation between
systems rather than within a single system [2]. Building on
the UEF platform, we assess motor—cardiac dynamic
interaction using the convergent cross-mapping (CCM)
approach; prior pilot data showed weaker interaction in
pre-frail/frail adults compared to non-frails and suggested
that CCM features improve discrimination beyond HR
dynamics and motor metrics [2].

Within a larger sample incorporating distinct pre-frail
(intermediate stage of frailty) and frail older adults, in the
current work, we evaluated four metrics, HR increase
during UEF, HR decrease during recovery, CCM
correlation, and MSE (the mean-squared prediction error
from CCM), to determine their association with frailty
stages. We hypothesized a graded pattern across non-frail,
pre-frail, and frail, with particular focus on distinguishing
pre-frail from frail and pre-frail from non-frail older adults.

2. Materials and Methods
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2.1. Participants

We enrolled community-dwelling and clinic-referred
adults >65 years, with or without advanced heart disease,
from primary/community sources and from cardiac
surgery clinics at Robert Wood Johnson (NJ) and Banner
(AZ). Inclusion criteria were the ability to walk 15 ft for
frailty assessment and the capacity to understand and sign
informed consent. Exclusions were major
motor/neurological disorders (e.g., Parkinson’s disease,
multiple sclerosis, and recent stroke); severe upper-
extremity conditions precluding the UEF task (e.g.,
bilateral elbow fractures and rheumatoid arthritis); severe
cognitive impairment; and terminal illness. To avoid
biased HR measurements, we also excluded subjects with
arrhythmias, implanted pacemakers, and those currently
using B-blockers or similar agents [4]. All participants
provided written informed consent; the study was
approved by Rutgers University and University of Arizona
IRBs and conducted in accordance with the Declaration of
Helsinki.

2.2. Frailty Assessments and Clinical

Measures

Frailty was classified using the five-component Fried
phenotype, including: (1) unintentional weight loss >4.5 kg
in the past year; (2) weak grip strength (sex/BMI-
adjusted); (3) slow 15-ft gait speed (height/sex-adjusted);
(4) self-reported exhaustion (2-item CES-D); and (5) low
physical activity (short Minnesota Leisure-Time Activity
Questionnaire) [5]. Participants were labelled non-frail (0
criteria), pre-frail (1-2 criteria), or frail (=3 criteria).
Clinical covariates included cognition (MoCA),
comorbidities (Charlson Comorbidity Index), and
depressive symptoms (PHQ-9).

2.3. UEF Test and HR Assessment

Participants rested in a seated position for 2 minutes,
performed a 20-second right-arm UEF (rapid arm flexion—
extension), then rested another 2 minutes. Prior work
showed comparable UEF outcomes for the left/right arms.
A Dbrief left-arm practice standardized instruction [6].
Upper-limb kinematics were recorded with two triaxial
inertial sensors (LEGSys, BioSensics; 100 Hz) on the right
forearm and upper arm; angular velocity was high-pass
filtered at 2.5 Hz, flexion cycles were detected, and the
continuous kinematic series (motor data) was retained for
CCM analysis. Cardiac activity was acquired using a
wearable ECG (360° eMotion Faros, Mega Electronics;
ECG 1000 Hz; accelerometer 100 Hz) with two left-chest
electrodes (upper mid-thorax and inferior to the left rib
cage) to obtain an ECG signal with synchronized
accelerometry for precise identification of task start/stop.

R-peaks were detected via a Pan—Tompkins algorithm with
visual verification to generate beat-to-beat HR [7]. Primary
cardiac outcomes were HR dynamics, including HR
increase during UEF and HR decrease during recovery. HR
and motor time series were time-aligned, and their
interconnection was quantified using CCM.

2.4. CCM Analysis

We quantified directional nonlinear coupling between
HR and motor kinematics using CCM, which tests whether
past values of one signal can predict the other. Both series
were resampled to 10 Hz (0.1-s intervals) via spline
interpolation. Each HR data point represents average HR
values over 0.1-s, and the corresponding motor samples
were the angular displacement over each 0.1-s of UEF,
computed by integrating the rectified elbow angular
velocity (denoted by My, Eq. 1)

— fti+0.1 a)edt, (1)
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Here, w, denotes the rectified elbow angular velocity.

By Takens’ embedding theorem, the state of a
dynamical system can be reconstructed from a single
observed series X(t) using delay coordinates [2]. The
reconstructed (shadow) manifold, My, is formed by E-
dimensional vectors built from lagged samples spaced by
7, as in Eq. (2):

My = (X, X(t — 1), X(t = 27) . X(t — (E — D)D) 2)

We built E-dimensional delay-embedded manifolds for
both series and set E = 4 from the false nearest neighbors
criterion, with a lag (7) of 1-s from delayed mutual
information. Using a k-nearest neighbors predictor with
k = E + 1, we performed directional prediction by
locating the k nearest points of the source manifold,
mapping their time indices to the target series, and forming
a distance-weighted average to estimate the target value, as
in Eq. (3); motor-to-HR and HR-to-motor were computed.

() =T wY (), 3)

Here, Y (t) is the original HR time series, and Y (t) is the
predicted HR value at time t. The weights w; were
computed based on the relative Euclidean distances
between points in the source manifold and its i*" nearest
neighbors. CCM strength was summarized by the Pearson
correlation coefficient r between the predicted and
observed target series, and by the mean squared error
(MSE) to capture the magnitude of prediction error.

2.5. Statistics
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Normality was assessed with the Shapiro—Wilk W test;
variables failing normality were rank- or log-transformed.
Group differences in numeric demographics (age, height,
weight, and BMI) were examined with univariate
ANOVA, and sex distributions with chi-square. For
outcomes, ANCOVA tested three-group differences (non-
frail/pre-frail/frail) for each dependent variable, adjusting
for age, sex, and BMI. Effect sizes for the three-group
ANCOVAs were quantified as Cohen’s f and computed in
G*Power. All analyses were conducted in JMP Pro
(version 18; SAS Institute Inc., Cary, NC, USA), with
significance set at p < 0.05.

3. Results

We enrolled 172 older adults (40 non-frail, 104 pre-
frail, and 28 frail as defined by Fried); age and BMI
differed across groups (p<0.04), while sex distribution was
comparable (y* p=0.11) (Table 1). During the UEF task,
HR increased in all groups but less with greater frailty
level: the frail group showed a 31.9% smaller increase than
non-frail and 15.4% smaller than pre-frail, with a
significant three-group effect (p<0.01; effect size=0.15).
Post-task recovery showed the same pattern; using the
absolute HR percent decrease, the frail group recovered
30.8% less than non-frail and 15.8% less than pre-frail,
with a trend for three-group differences (p=0.06; effect
size=0.19). Motor—cardiac coupling also weakened with
frailty; the HR—angle correlation declined across groups
(»<0.01; effect size=0.33), 26% lower in frail vs non-frail
and 11.4% lower vs pre-frail, while prediction error (MSE)
increased across groups (p<0.01; effect size=0.29),
indicating progressively weaker coupling (Figure 1).

Table 1. Participant Demographics by Frailty Status

Demographic Non-frail | Pre-frail Frail

Information (n =40) (n =104) (n=28)

Age (mean = SD) 712+84 | 774+9.1 | 77.9+8.7

Female, n (%) 23 (58%) 58 (56%) 10 (36%)

BMI (mean+SD) | 25.8+4.8 | 28.2+5.5 | 289+6.6
4. Discussion

This study demonstrates that both HR dynamics and
heart—motor interactions obtained during the UEF test
were significantly different across frailty groups. Frail
adults showed attenuated HR increase during UEF, slower
post-task HR recovery, and weaker heart—-motor coupling
compared with pre-frail and non-frail peers. Together,
these group differences align with autonomic
dysregulation in frailty, which is caused by an imbalance
between sympathetic and parasympathetic control. This
imbalance between sympathetic/parasympathetic control
indicates a reduced capacity to mount and recover from
stress responses [8].
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Figure 1. Group differences in HR response and heart-
motor coupling across frailty groups

HR dynamics in response to UEF provide a sensitive
marker of autonomic dysfunction in frailty. Unlike resting
HRV, whose utility is limited by between-subject
variability, diurnal fluctuation, and sensitivity to breathing
and environmental conditions, HR dynamics capture
sympathetic  activation  during movement and
parasympathetic rebound during recovery, yielding a
dynamic index of cardiac resilience; the significant group
differences we observed support this value [9]. In our
cohort, baseline HRV metrics commonly used to index
autonomic balance, SDRR (standard deviation of RR
intervals), RMSSD (root mean square of successive RR
differences), pNNS50 (percentage of successive RR
intervals differing >50 ms), and non-linear Poincaré
indices SD1/SD2, showed no significant three-group
differences in ANCOVA (non-frail/pre-frail/frail),
adjusting for age, sex, and BMI (all p>0.2), indicating that
resting HRV did not discriminate frailty status in this
sample. In contrast, task-evoked HR dynamics did [10].
Complementing HR dynamics, CCM quantified HR—
motor dynamic interaction and showed weaker coupling in
frail participants, indicating reduced cross-system
integration.

From a clinical standpoint, these findings are highly
relevant for populations with advanced heart disease,
where frailty is common and disease-specific tools are
limited. The UEF-based approach is brief, requires
minimal mobility, and can be performed at the bedside,
making it feasible for patients unable to complete walking-
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based frailty tests. The clear group differences support
integrating task-evoked HR dynamics and heart-motor
coupling into a multimodal frailty risk score. Also, we have
already validated the feasibility of smartwatch-based
frailty assessment using built-in gyroscopes and PPG
sensors. The future integration of these measures into
wearable platforms could enable practical monitoring in
both clinical and home settings [11].

Future studies should recruit larger, balanced samples
across frailty groups, include longitudinal follow-up, and
test reproducibility in diverse clinical populations.

5. Conclusion

We introduced a brief, seated multimodal assay that
combines HR dynamics with motor—cardiac coupling
quantified by CCM during a 20s UEF task to index
autonomic and motor resilience in older adults. Frailty was
associated with a blunted HR increase during the task and
an attenuated HR decrease during recovery, whereas
resting HRV features were not discriminatory, highlighting
the value of dynamic HR responses in frailty assessment.
CCM captured the dynamic interaction between
physiological systems and differed significantly among the
three frailty groups (non-frail, pre-frail, and frail). Using
CCM, we could assess coupling deficits between frail and
pre-frail (the intermediate stage of frailty), demonstrating
clear stage sensitivity. HR dynamics showed the same
pattern of groupwise differences and stage sensitivity.
Because UEF is short, objective, and feasible even for
hospitalized or bed-bound patients, this approach can
complement or substitute walking-based assessments
when mobility is limited. This work establishes the CCM-
based integration of motor and cardiac performance as a
candidate frailty marker in cardiac patients, which, to our
knowledge, has not been reported. Using the current work
as a proof of concept, future work will develop and validate
a multimodal frailty score that includes motor performance
and cardiac dynamics to improve the generalizability of
our frailty assessment scoring system.
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